Действие электрического тока на организм человека
Виды поражений электрическим током
Протекая через тело человека, электрический ток вызывает тепловое, электрохимическое и биологическое действия.
Тепловое действие тока проявляется в нагреве и ожогах отдельных участков тела; электрохимическое в разложении крови и других органических жидкостей; биологическое действие тока связано с раздражением и возбуждением живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе мышц легких и мышцы сердца, и может вызвать прекращение деятельности органов кровообращения и дыхания.
Указанные действия тока могут привести к двум видам поражения: электрическим травмам и электрическим ударам.
К электрическим травмамотносятся электрические ожоги, электрические знаки, электрометаллизация кожи, электроофтальмия и механические повреждения.
Причиной электрических ожогов может быть действие электрической дуги (дуговой ожог) или прохождение тока через тело человека в результате контакта его с токоведущей частью (токовый ожог). Токовый ожог является, как правило, ожогом кожи в месте контакта тела с токоведущей частью вследствие преобразования электрической энергии в тепловую. Так как кожа человека обладает во много раз большим сопротивлением, чем другие ткани тела, в ней выделяется большая часть тепла. Токовые ожоги возникают в электроустановках, главным образом, напряжением до 1000 В.
Дуговой ожог обусловлен воздействием на тело электрической дуги, которая создается при разряде в случае приближения человека к токоведущим частям, находящимся под напряжением выше 1000 В, или при коротких замыканиях в электроустановках
напряжением до 1000 В. Электрическая дуга, обладающая высокой температурой, может вызвать обширные ожоги тела и привести к смертельным случаям.
Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой омертвевшие пятна на коже человека, подвергшегося действию тока. В большинстве случаев электрические знаки безболезненны и поддаются лечению.
Электрометаллизация кожи обусловлена проникновением в верхние ее слои мельчайших частичек металла, расплавившихся под действием электрической дуги. Впоследствии поврежденный участок восстанавливается и приобретает нормальный вид, исчезают болезненные ощущения. Весьма опасными могут быть случаи поражения глаз, нередко приводящие к потере зрения. Поэтому работы, при которых возможны подобные случаи, должны выполняться в защитных очках. Вместе с тем одежда работающего должна быть застегнута на все пуговицы, ворот закрыт, а рукава опущены и застегнуты у запястьев рук.
Нередко одновременно с металлизацией кожи возможен ожог электрической дугой.
Электроофтальмия воспаление наружных оболочек глаз, возникающее в результате воздействия потока ультрафиолетовых лучей. Подобное облучение возможно при возникновении электрической дуги, например, при коротких замыканиях, которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей.
Предупреждение электроофтальмии при обслуживании электроустановок обеспечивается применением специальных защитных очков, которые одновременно защищают глаза от брызг расплавленного металла.
Механические повреждения возникают в результате резких непроизвольных судорожных сокращений мышц под действием тока. Это может привести к падению с высоты, вывихам суставов, переломам и т. д.
Электрические удары относятся к виду поражений, которые имеют место при воздействии малых токов (порядка нескольких сотен миллиампер) и напряжения до 1000 В. При электрических ударах исход воздействия тока на человека может быть различным от легкого, едва ощутимого судорожного сокращения мышц пальцев до смертельного поражения, связанного с прекращением работы сердца или органов дыхания.
Степень поражения током при электрических ударах характеризуется его пороговым значением. Характерными являются следующие токи: пороговый ощутимый, пороговый неотпускающий, пороговый фибрилляционный.
Пороговый ощутимый ток наименьшее значение ощутимого тока, вызывающего при прохождении через организм человека ощутимые раздражения.
Пороговый неотпускающий ток наименьшее значение неотпускающего тока, вызывающего при прохождения через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник.
Пороговый фибрилляционный ток наименьшее значение фиб- рилляционного тока, вызывающего при прохождении через организм фибрилляцию сердца.
Как будет показано ниже, ток, протекающий через человека, колеблется в широких пределах и зависит от многочисленных трудноучитываемых физических и физиологических явлений. В отличие от прошлых лет в настоящее время в технике электробезопасности преобладает мнение о нецелесообразности нормирования в промышленности и в быту опасных и безопасных пороговых значений напряжения и тока.
Таблица 1. Характер воздействия электрического тока на организм человека
Значение тока, мА | Переменный ток, 50 Гц | Постоянный ток |
06-1,6 | Начало ощущения слабый зуд, пощипывание кожи под электродами | Не ощущается |
2-4 | Ощущение тока распространяется . и на запястье руки, слегка сводит руку | Не ощущается |
5-7 | Болевые ощущения усиливаются во всей кисти руки, сопровождаясь судорогами; слабые боли ощущаются во всей руке, вплоть до предплечья. Руки, как правило, можно оторвать от электродов | Начало ощущения впечатление нагрева кожи под электродом |
S-10 | Сильные боли и судороги во всей руке, включая предплечье. Руки трудно, но еще можно оторвать от электродов | Усиление ощущения нагрева |
10-15 | Едва переносимые боли во всей руке. Во многих случаях руки невозможно оторвать от электродов. С увеличением продолжительности протекания тока боли усиливаются | Еще большее усиление ощущения нагрева как под электродами, так и в прилегающих областях кожи |
20-25 | Руки парализуются мгновенно, оторвать от электродов невозможно. Сильные боли, дыхание затруднено | Еще большее усиление ощущения нагрева кожи. Незначительные сокращения МЫШЦ РУК |
25-50 | Очень сильная боль в руках и в груди. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания | Ощущения сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц рук |
50-80 | Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца | Ощущения очень сильного нагрева, сильные боли во всей области груди. Затруднение дыхания. Руки невозможно оторвать от электродов |
100 | Фибрилляция сердца через 23 с, еще через несколько секунд паралич сердца | Паралич дыхания при длительном протекании тока |
300 | То же действие за меньшее время | Фибрилляция сердца через 23 с, еще через несколько секунд паралич дыхания |
Более 500 | Дыхание парализуется немедленно через дали секунды. Фибрилляция сердца, как правило, не наступает. Возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожога, разрушение тканей | Усиление ощущения нагрева |
Основные факторы, влияющие на исход поражения человека электрическим током, следующие.
Путь тока в теле человека.
Путь тока в теле человека по-разному влияет на поражение. С некоторых пор этому вопросу стали придавать большое значение, так как анализ несчастных случаев позволил установить зависимость их от вида так называемой петли тока, т. е. от пути тока через тело человека. Наиболее часто встречаются следующие четыре петли: правая рука ноги, левая рука ноги, рука рука, нога нога. В большинстве случаев цепь тока возникает по пути правая рука ноги. Наиболее распространенным и, как правило, сопровождающимся тяжелыми повреждениями является путь тока (петля тока) рука рука, когда ток проходит через жизненно важные органы, в частности через сердце.
Как показывают анализы несчастных случаев, примерно 55% всех электрических ударов происходят по двум основным путям: от руки или рук к ногам и от одной руки к другой руке. Однако смертельные поражения составляют половину от приведенной цифры несчастных случаев.
Опасность определяется не тем, протекает или не протекает ток через область сердца, а тем, каким участком тела касается человек токоведущих частей. Наиболее уязвимыми местами человеческого тела являются тыльная часть кисти, шея, висок; передняя часть ноги, плечо. Образование электрической цепи через уязвимые места приводит к смертельным исходам даже при очень малых токах и напряжениях.
Электрическое сопротивление тела человека.
Электрическое сопротивление цепи, по которой проходит ток через тело человека, состоит из электрического сопротивления проводов активного и индуктивного; электрического сопротивления машин, аппаратов или приборов, оказавшихся последовательно включенными с телом человека; электрического сопротивления переходного контакта между токоведущими частями оборудования, которых коснулся человек; собственного электрического сопротивления тела человека.
Сопротивление тела человека представляет собой сложный комплекс биофизических, биохимических и других явлений. Его принято делить на две части: сопротивление кожи и кровеносных сосудов и сопротивление нервов. Верхний слой кожи обладает заметным сопротивлением по сравнению с сопротивлением внутренних органов. Наличие в коже потовых желез сильно изменяет ее электрическое сопротивление. Сопротивление нервов очень мало. Именно эта составляющая общего сопротивления играет наиболее существенную роль в токовой проводимости, а стало быть, и в исходе электротравмы. На электрическое сопротивление живого организма оказывает влияние большое число факторов. Существенное значение при этом имеет состояние кожи: повреждения рогового слоя (поры, царапины, ссадины и другие микротравмы); увлажнение водой или потом; загрязнение различными веществами и в особенности хорошо проводящими электрический ток (металлическая или угольная пыль, окалина и т. п.).
Сопротивление тела человека, т. е. сопротивление между двумя электродами, наложенными на поверхность тела, можно условно считать состоящим из трех последовательно включенных сопротивлений: двух сопротивлений наружного (рогового) слоя кожи и одного, называемого внутренним сопротивлением тела, которое включает сопротивление внутреннего слоя кожи и сопротивление внутренних тканей тела. В целом указанные сопротивления имеют активную и емкостную составляющие.
При практических расчетах необходимо знать и оценивать численные значения сопротивления электрической цепи человека между двумя электродами, наложенными на тело. Род тока и напряжение. Исследования (см. табл. 1), практика эксплуатации электроустановок показывают, что постоянный ток по сравнению с переменным тех же значений менее опасен для человека. Объясняется это в первую очередь тем, что из-за наличия емкостной составляющей в электрическом сопротивлении тела человека плотность тока, а следовательно, и напряженность поля в тканях будут при равных напряжениях в случае поражения переменным током больше, чем при поражении постоянным. Сказывается также то существенное обстоятельство, что при переменном токе поражающее амплитудное напряжение может быть в 1,4 раза больше действующего напряжения. И наконец, вероятность образования электрической цепи через уязвимые места при переменном токе больше, чем при постоянном, ибо сети переменного тока охватывают несравненно большее число установок, к тому же самых различных, тогда как сети постоянного тока имеют более ограниченные и специализированные применения.
Сказанное об относительной опасности поражения постоянным и переменным токами справедливо лишь для небольших напряжений порядка 250 - 300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный с частотой 50 ГЦ, из-за возможности отброса пострадавшего от токоведущих частей, находящихся под высоким напряжением, что крайне редко наблюдается при аналогичных поражениях переменным током. Отброшенный может получить механическую травму, в результате которой (например, при падении) не исключен и смертельный исход.
В целом следует отметить, что вопрос о сравнительной опасности для человека переменного и постоянного тока нуждается в дальнейшем изучении, что позволит расширить наши представления о биофизике электротравмы.
Напряжение, приложенное к электрической цепи, приводит к преобразованию электрических явлений в другие явления, воздействие которых на организм человека и вызывает непосредственно тот или иной исход поражения. Сложилось и существует мнение, что исход поражения электрическим током зависит от напряжения сети: чем выше это напряжение, тем опаснее последствия электротравмы. В статистических отчетностях учет электро-травм ведется с подразделением по значениям напряжения сети. По этому же признаку анализируются данные и классифицируются элекгротравмы, проводятся исследования, эксперименты. Между тем такое изучение электротравмы далеко не всегда дает правильное представление об этом поражающем факторе.
Действующие у нас Правила делят все установки по напряжению ниже и выше 1000 В. В установках напряжением выше 1000 В основной причиной смертельных поражений являются ожоги, вызванные прохождением электрического тока. В установках ниже 1000 В основная причина поражения связана с непосредственным действием тока. Статистика показывает, что электротравмы со смертельным исходом имеют место преимущественно в установках до 1000 В.
Смертельные поражения бывают и при малых напряжениях (65, 36, 24, 12 В). Их анализ показывает, что они обусловлены не только фибрилляционным током, который нельзя получить при этих напряжениях. Поражения от 12 до 65 В могут привести к смертельному исходу лишь при особых обстоятельствах, например, если электрическая цепь возникает через уязвимые к току места, если неблагоприятны условия внешней среды. Возможны также и другие причины смертельного исхода, пока еще недостаточно изученные.
Суммируя сказанное в отношении отсутствия прямой зависимости между исходом поражения и напряжением, током, констатируем, что невозможно с высокой точностью нормировать в промышленности (и в быту) опасные и безопасные пороговые значения тока и напряжения.
Длительность существования электрической цепи через тело человека.
Исход поражения электрическим током связан с фактором времени. При анализе несчастных случаев этому параметру уделяется большое внимание, особенно если учесть наличие противоречий в оценке опасного (и безопасного) времени прохождения тока через человека. С одной стороны, наблюдаются поражения с тяжелым исходом даже при небольших токах и очень малой длительности прохождения тока через человека (доли секунды), с другой случаи с благоприятным исходом (исключая ожоги) при длительности поражения в несколько секунд и более.
Из-за приведенных противоречий не представляется возможным строго обосновать зависимость исхода поражения от продолжительности существования электрической цепи.
Влияние частоты
Из приведенной выше формулы полного сопротивления тела человека следует, что с увеличением частоты переменного тока сопротивление уменьшается, что ведет к увеличению тока и повышению опасности поражения. Однако практика показывает, что этот вывод справедлив лишь в пределах определенных частот. Долгое время считалось, что в области низких частот наибольшей опасностью обладает 50-периодный ток. При дальнейшем повышении частоты в пределах 50 - 400 Гц ток сохраняет примерно одинаковые значения. Дальнейшее повышение частоты снижает опасность поражения. Но вредно или не вредно это для организма человека, утвердительного ответа пока не существует.
Отмечается сравнительная опасность для человека выпрямленного тока. Наличие в нем частотных составляющих утяжеляет исход электротравмы. Пока это малоизученный раздел электробезопасности.
Воздействие окружающей среды.
Окружающая среда во многих случаях может оказывать влияние на поражение человека электрическим током. К факторам этого влияния относятся атмосферное давление, температура, влажность, электрическое или магнитное поля и др.
Повышение температуры воздуха влияет на потоотделение у человека, в результате чего падает электрическое сопротивление его тела и возрастает опасность поражения электрическим током.
Аналогичные явления связаны также с повышенной влажностью. Здесь отмечается снижение не только электрического сопротивления, но и общей сопротивляемости организма электрическому току.
Влияние указанных двух факторов температуры и влажности зафиксировано в нормативных документах.
Третий атмосферный фактор давление окружающего воздуха также оказывает влияние на чувствительность к электрическому току. При повышении давления опасность поражения уменьшается. Так, например, статистика показывает, что при подводной электросварке не было зарегистрировано смертельных и тяжелых электротравм, хотя случаи соприкосновения водолазов, работающих под водой, с токоведущими элементами и контактами отмечались неоднократно.
Обратная картина была установлена для пониженного атмосферного давления, что особенно существенно в связи с электрификацией горных районов. Экспериментально доказано, что пониженноеатмосферное давление увеличивает опасность электрического тока для живых организмов.
Медико-биологические свойства человека
Анализ несчастных случаев при поражении электрическим током показывает, что исход поражения связан с медико-биологическими особенностями человека, состоянием его здоровья. Физически здоровые и крепкие люди легче переносят электротравмы, нежели бальные и слабые. Люди, страдающие болезнями кожи, сердечно-сосудистыми, нервными заболеваниями, более восприимчивы к электрическому току.
Поэтому правила техники безопасности при эксплуатации электроустановок предусматривают медицинский отбор персонала для обслуживания электроустановок. Отбор осуществляется при поступлении на работу, периодические осмотры в сроки, устанавливаемые Минздравом в соответствии со списком болезней и расстройств, препятствующих допуску к работе. Отбор преследует и другую цель: не допустить к обслуживанию электроустановок людей с заболеваниями, которые могут мешать их производственной работе или служить причиной ошибочных действий, опасных для других лиц (неразличение цвета сигнала из-за порока зрения, невозможность подать четкую команду из-за болезни горла или заикания и т. п.).
Кроме того, правила техники безопасности не допускают к обслуживанию электроустановок лиц моложе 18 лет и не имеющих определенных знаний в области электробезопасности, соответствующих объему и условиям выполняемых ими работ.